You are viewing an old version of this content. View the current version.
Compare with Current
View Version History
« Previous
Version 6
Next »

This page describes how to build new reports in Reporting module for Axiodis and / or customize existing report.
Datawarehouse content
Axiodis datawarehouse propose by default following tables and corresponding data which can be used to create reports :
Table | Description | Type |
---|
IC_D_DRIVER | Dimension table about drivers | Dimension |
IC_D_LOGISTIC_AREA | Dimension table about logistics areas | Dimension |
IC_D_OPERATION | Dimension table about transport operations | Dimension |
IC_D_PRODUCT | Dimension table about products | Dimension |
IC_D_PROVIDER | Dimension table about providers | Dimension |
IC_D_ROUTE | Dimension table about routes | Dimension |
IC_D_SEQUENCE | Dimension table about sequences | Dimension |
IC_D_SITE | Dimension table about sites | Dimension |
IC_D_TRAILER | Dimension table about trailers | Dimension |
IC_D_TRUCK | Dimension table about trucks | Dimension |
IC_M_OPERATION | Measure table about transport operations | Measure |
IC_M_ROUTE | Measure table about routes | Measure |
IC_M_SEQUENCE | Measure table about sequences | Measure |
IC_D_ROUTE_INVOLVED_PROVIDERS | Dimension table to store all the involved providers fo the routes | Dimension |
IC_D_ROUTE_VALORIZED_PROVIDERS | Dimension table to store all the valorized providers of the routes | Dimension |
Existing dataset and their parameters
Dataset | Description | Query | Parameters |
---|
| Dataset about drivers activity |
| |
DS_AXD_ROUTES | Dataset to recover generic data about routes | SELECT dr.*, mr.*, mr.#SITES_COLLECTED+mr.#SITES_DELIVERED as #SITES, mr.#SITES_COLLECTED_PREDICTED+mr.#SITES_DELIVERED_PREDICTED as #SITES_PREDICTED, ((mr.#SITES_COLLECTED+mr.#SITES_DELIVERED) - (mr.#SITES_COLLECTED_PREDICTED+mr.#SITES_DELIVERED_PREDICTED)) as #NOMINAL_SITES, mr.UV_COLLECTED+mr.UV_DELIVERED as UV, mr.UV_COLLECTED_PREDICTED+mr.UV_DELIVERED_PREDICTED as UV_PREDICTED, ((mr.UV_COLLECTED+mr.UV_DELIVERED) - (mr.UV_COLLECTED_PREDICTED+mr.UV_DELIVERED_PREDICTED)) as NOMINAL_UV, mr.UP_COLLECTED+mr.UP_DELIVERED as UP, mr.UP_COLLECTED_PREDICTED+mr.UP_DELIVERED_PREDICTED as UP_PREDICTED, ((mr.UP_COLLECTED+mr.UP_DELIVERED) - (mr.UP_COLLECTED_PREDICTED+mr.UP_DELIVERED_PREDICTED)) as NOMINAL_UP, mr.UQ_COLLECTED+mr.UQ_DELIVERED as UQ, mr.UQ_COLLECTED_PREDICTED+mr.UQ_DELIVERED_PREDICTED as UQ_PREDICTED, ((mr.UQ_COLLECTED+mr.UQ_DELIVERED) - (mr.UQ_COLLECTED_PREDICTED+mr.UQ_DELIVERED_PREDICTED)) as NOMINAL_UQ, mr.UM_COLLECTED+mr.UM_DELIVERED as UM, mr.UM_COLLECTED_PREDICTED+mr.UM_DELIVERED_PREDICTED as UM_PREDICTED, ((mr.UM_COLLECTED+mr.UM_DELIVERED) - (mr.UM_COLLECTED_PREDICTED+mr.UM_DELIVERED_PREDICTED)) as NOMINAL_UM FROM IC_M_ROUTE mr INNER JOIN IC_D_ROUTE dr ON mr.ID_ROUTE = dr.ID WHERE dr.DOMAIN_CODE in ($P{logistic_area()}) AND dr.ROUTE_DATE >= CONVERT(DateTime, $P{start_date}) AND dr.ROUTE_DATE <= CONVERT(DateTime, $P{end_date}) order by dr.DOMAIN_CODE, dr.CODE | |
DS_AXD_ROUTES_VAR | Dataset to recover generic data about routes | with AXD_ROUTES_VAR as ( SELECT dr.ID, dr.CODE, dr.EXTERNAL_ID, dr.ROUTE_DATE, dr.DOMAIN_CODE, DATEPART(WW, dr.ROUTE_DATE) as ROUTE_WEEK, DATEPART(MM, dr.ROUTE_DATE) as ROUTE_MONTH, DATEPART(YY, dr.ROUTE_DATE) as ROUTE_YEAR, mr.TOTAL_DISTANCE_PREDICTED, mr.TOTAL_DISTANCE, mr.TOTAL_TIME_PREDICTED, mr.TOTAL_TIME, mr.TRANSPORTATION_COST_PREDICTED, mr.TRANSPORTATION_COST, mr.#SITES_COLLECTED+mr.#SITES_DELIVERED as #SITES, mr.#SITES_COLLECTED_PREDICTED+mr.#SITES_DELIVERED_PREDICTED as #SITES_PREDICTED, mr.UV_COLLECTED+mr.UV_DELIVERED as UV, mr.UV_COLLECTED_PREDICTED+mr.UV_DELIVERED_PREDICTED as UV_PREDICTED, mr.UP_COLLECTED+mr.UP_DELIVERED as UP, mr.UP_COLLECTED_PREDICTED+mr.UP_DELIVERED_PREDICTED as UP_PREDICTED FROM IC_M_ROUTE mr INNER JOIN IC_D_ROUTE dr ON mr.ID_ROUTE = dr.ID WHERE dr.DOMAIN_CODE in ($P{logistic_area()}) AND dr.ROUTE_DATE >= CONVERT(DateTime, $P{start_date}) AND dr.ROUTE_DATE <= CONVERT(DateTime, $P{end_date}) ) select AXD_ROUTES_VAR.*, cast(AXD_ROUTES_VAR.ROUTE_YEAR as nvarchar) as X_VALUE from AXD_ROUTES_VAR where 0 = $P{axis_type} UNION ALL select AXD_ROUTES_VAR.*, cast(AXD_ROUTES_VAR.ROUTE_MONTH as nvarchar) as X_VALUE from AXD_ROUTES_VAR where 1 = $P{axis_type} UNION ALL select AXD_ROUTES_VAR.*, cast(AXD_ROUTES_VAR.ROUTE_WEEK as nvarchar) as X_VALUE from AXD_ROUTES_VAR where 2 = $P{axis_type} UNION ALL select AXD_ROUTES_VAR.*, cast(AXD_ROUTES_VAR.ROUTE_DATE as nvarchar) as X_VALUE from AXD_ROUTES_VAR where 3 = $P{axis_type} | |
DS_AXD_TRUCKS_ACTIVITY | Dataset about trucks activity | SELECT dr.DRIVER_CODE, dd.LABEL, mr.TOTAL_TIME_PREDICTED, mr.TOTAL_TIME, mr.NOMINAL_DIFF_TOTAL_TIME, mr.RELATIVE_DIFF_TOTAL_TIME, mr.TOTAL_DISTANCE_PREDICTED, mr.TOTAL_DISTANCE, mr.NOMINAL_DIFF_TOTAL_DISTANCE, mr.RELATIVE_DIFF_TOTAL_DISTANCE FROM IC_M_ROUTE mr INNER JOIN IC_D_ROUTE dr ON mr.ID_ROUTE = dr.ID INNER JOIN IC_D_DRIVER dd ON dr.DRIVER_CODE = dd.ID WHERE dr.DOMAIN_CODE in ($P{logistic_area()}) AND dr.ROUTE_DATE >= CONVERT(DateTime, $P{start_date}) AND dr.ROUTE_DATE <= CONVERT(DateTime, $P{end_date}) order by dr.DRIVER_CODE | |
How to create a report using existing dataset?
This section shows how to create a new report, using the existing datasets.
- First, you have to log into Axiodis with an authorized user (Authorization Reporting - Functionality by default - Creation within the authorization profile used).
- Then launch the SpagoBI module
- Open Documents development

- Create a new report (cockpit)

- Add a widget and select a dataset

- Drag & Drop the wished widget, and set the widget designer

- Choose the fields in the list (measures and attributes from the dataset)


- Edit the report to add the parameters definition

- Create the document analytical driver


- Open and edit again the report, then add the parameters


- Confirm and save the report.
- You can now define parameters (Start date, End date and logistic areas), and click on Execute

How to create a new dataset
How to update datawarehouse database and MIA streams if necessary

www.maplink.global